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Abstract. It is shown how polynomial time prime tests, which are both fast and deterministic. 
can be developed for many numbers of the form Ar" - I (r = 5, 7; A < r"). These tests, like 
the Lucas-Lehmer test for the primality of the Mersenne numbers, are derived by using the 
properties of the Lucas functions. We exemplify these ideas by using numbers of the form 
2 - 10' - 1. 

1. Introduction. If N is an integer of the form 2" - 1 (n odd, n > 2), the 
Lucas-Lehmer test for the primality of N may be given in terms of the following 3 
steps: 

(1) Put S1 = 4. 
(2) Define for k > 1 

5k?1 - Sk - 2 (mod N). 

(3) N is a prime if and only if 

Sn - O0 (mod N). 

This is an effective primality test for N which executes in O(log N) operations.** 

In [7] Lehmer showed, by changing the value of S,, that tests like this could be 
developed for numbers of the form A2" - 1 whenever A < 2". The difficulties 
which arise when 3 1 A have been discussed by Inkeri [5] and Riesel [10], [11]. 

Williams [13], [14] described O(log N) tests for the primality of integers of the 
form A3" - 1 (A < 3"). The test in [13] is effective for those values of N for which 
we know a small prime q such that N is a cubic nonresidue of q. For certain values 
of A such a q is easy to find; for example, if A 4, 7, 8, 10, 11, 12 (mod 13), then 
q = 13. In [12] Williams extended his ideas for N = A3" - 1 to N = Arn - 1, where 
r is an odd prime and A < r". However, in order for these tests, which again 
execute in O(log N) operations, to be effective, it is first necessary to have a small 
prime q such that N is an r th power nonresidue of q, and it is also necessary to 
have a solution R of a certain polynomial congruence of degree (r - 1)/2. It was 
shown in [12] how this latter problem could be dealt with when A is very small or 
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when r = 5. In Williams [15] it was shown that for certain values of A, when r = 7 
or 11, an effective O(log N) method could be developed to find R. In all of these 
cases, however, when A is large it is first necessary to find R, then employ it in the 
primality test. 

In this paper we show how the tests for the primality of N = A5' - 1 or A7' - 1 
for certain A-values can be made more efficient than those described earlier. We do 
this by first providing a noneffective O(log N) primality test for N. Should this test 
fail to determine whether or not N is a prime, it will still provide a value for R, 
which can subsequently be used in an effective O(log N) test for the primality of N. 
In order to do this, we must first develop some simple properties of the Lucas 
functions and also show how the Lucas functions can be utilized in the problem of 
solving certain quadratic and cubic congruences. 

As an example of our new tests, we mention here that by using the ideas of [12] it 
is possible to develop an effective O(log N) test for the primality of integers of the 
form 

N= 2 10" - 1 
when n is odd (Zarnke and Williams [17]). By using the ideas presented here we are 
now able to provide an effective O(log N) test for the primality of N when n is even 
and 138007919535942456000 does not divide n. 

2. Some Identity Properties of the Lucas Functions. Let P, Q be two coprime 
integers and let a, /3 be the zeros of x2 - Px + Q. We define the Lucas functions 
Vn(P, Q), Un(P, Q) (n E Z) by 

Vn(P, Q) = an + fin, Un(p, Q) = (an _ /n)/(a - /3). 

Also, if we put 8 = a - / and A = 82, we have A = p2 - 4Q. (We assume here 
that 8 + 0.) When dealing with the Lucas functions modulo N it is sufficient to 
insist that gcd(N, Q) = 1 rather than gcd(P, Q) = 1. 

There are many identities which are satisfied by the Lucas functions and, as we 
will need several of them in our later work, we present a number of these identities 
below. Unless there is some ambiguity concerning the values of the arguments P, Q 
of Vn(P, Q) and Un(P, Q), we often omit them. The identities (2.1) to (2.5) below 
are well known and can be easily verified by using the definitions of Vn and Ub. 

(2.1) Vn2 AUn2 4Q n 

(2.2) V2n = V- 2Qn, U2n = VA, 

(2.3) V3n = V -(Vn- 3Qn) U3n = un(v - Qn) 

(2.4) Vm+n = VnVmQnVmn, Um+n VnUm -QU n 
(2.5) 2Vm+n = VnVm + AUnUm, 2Um+n = UnVm + VnUm. 

The identity (2.6) can also be verified by direct substitution. 

(2.6) 3anUm = Kam - Q nVnm. 

If we define the Sylvester polynomial Gm(x) by G-l(x) = -1, GO(x)= 1, and 
Gk+l(x) = xGk(x)- Gk-l(x) (k = 0,1,2, ... ), then 

2s+1 _ 

X - 1 
= 

xsGs(x + x-). 
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Also, GJ(-2) = (-I)', and when 3 l s, G(-l) = 1. If we put r = 2s + 1 and x = 

-(a/#)', we get 
(2.7) Vn r ( QsGs(V2n/Qn)Vn; 

if we put x = (a/lp) , we get 

(2.8) Un r = Q (V2n(/Ql) Un 

These identities generalize the identities (2.3). 
It is also convenient to have identities for Vnr+k' Unr+kk Such identities may be 

obtained by using (2.6) to see that we must also have 

-8f3Um = V1 - QmV 

If we raise this identity and (2.6) to the odd power r and then multiply the first by 
/3k and the second by a , we get 

Srflnrurf3k = (V/3m - Qmv)rfk 

8rnr rk = (am-QmV rk 8 ra Um a =( Vna- En-m)r a 

If we subtract these, expand by the binominal theorem, and use the fact that 

Umj+k = (amj ~k _ 1mj?k)/8 we get 

(2.9) 0Vnr+k E (0n- Umj+k 
j=O 

for odd r. If we had added the two identities above we would get a similar identity 
for A(r+ 1)/2Unr+kUmr. If r is even, we can also get identities for Ar/2VVnr+kUmr and 

Ar/2Unr+kUmr. None of these identities, in spite of the ease by which they may be 

derived, seems to occur in the extensive literature on the Lucas functions. They are 
similar to identities discovered by Siebeck (see [3, p. 394]), Jarden and Motzkin (see 
[6, pp. 79-80]), Halton [4], and Carlitz and Ferns [2]. 

To compute Vn (and Un) (mod N) for large values of n, it is convenient to 
introduce the function 

Wm V2mQ-m (mod N). 

(We assume here that gcd(Q, N) = 1.) If we replace n by 2n and m by 2m in (2.2) 
and (2.4), we get 

(2.10) W2n W2-2 (mod N) 

and 

(2.11) Wm+n WmWn- Wm-n (modAN). 
If we put m = n + 1 in (2.11), we get 

(2.12) W2n+l- Wntn+ - W1 (mod N), 

where 

I-p2Q-1 -2 (mod N). 
Now let (bobjb2 ... b,)2 be the binary representation of m, where bo = 1, bi = 0 

or 1 when i = 1, 2, 3, . . ., t, and t = [log2 m]. Using the notation { A B) {C, D} 
(mod N) to mean A C, B D (mod N), set go f {W1, W2} (mod N) and 
deduce gi + 1 from gi = {A, B ) by 

f {A2 -2, AB- W1}(modN) when bi+1=O, 

k{AB - W1 B2- 2) (mod N) when bj+1 = 1. 
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From (2.10) and (2.12) it is clear that 

92tt{ Wm, Wm + } (mod N) 

This furnishes us with a computationally efficient method for computing the values 
of Wm and Wm+, (mod N). 

We have already seen that some identities like (2.2) and (2.4) simplify when 
converted to congruences involving the W-functions. We should also point out here 
that (2.7) becomes 

(2.13) Wnr (-1) G, (- W2n )n (mod N). 

Also, by putting m = 2n + 1 and n = 1 in (2.4), we get 

(2.14) PV2Q(Wn+1 + Wn) (mod N). 

If we put n = 1 and m = 2n + I in (2.5) and (2.4), we get 

(2.15) AU2n 1Q- Q(W 11 - Wn) (mod N). 

If we put m = 2n and n = 2 in (2.5), we also have 

(2.16) PAU2nQ-" 2QW,+l - (p2- 2Q)WWn (modN). 

Finally, on putting r = 3, k = -4, m = 2 in (2.9), we get 

P2AV3n-4 = - 3Q2 VnV, 2 + Q2(p2 - 2Q)VQ2, 

and if we put n = 2m + 2, we get 

(2.17) P2A\W3m+i _ Q2W3+1 3Q2Wm+iW2 + Q(p2 - 
2Q)Wm 

(mod N). 

3. Some Number-Theoretic Properties of the Lucas Functions. Let p be an odd 
prime such that p + AQ and let ?, q equal the values of the Legendre symbols (A/p) 
and (Q/p), respectively. It is well known that 

(3.1) VpF 2Q(1 Up e- 0 (mod p). 

Further, in [7] Lehmer proves 

THEOREM 3.1. If p + AQ, then p + U(p-e)/2 if and only if =-1. 0 

By using this result, Lehmer essentially proves 

THEOREM 3.2. Let N = A2n - 1, where A < 2n. If the Jacobi symbols (A/N) = 

(Q/N) = -1, then N is a prime if and only if 

V(N+1)/2(P, Q) 0 (mod N). 0 

For example, if we put P = 2, Q = -2, then A = 12 and (A/N) = (Q/N) = -1 

when N = 2" - 1 (n > 2). Hence, -WV1 = 4, and if S, = -W1, we have Sk- W2k- 

(mod N) by (2.10) and 

S1 - W(N+1)/4 -' (+1)/2Q (mod N). 

Thus, N I Snal if and only if N I V(N ? 1)/2 and we have the Lucas-Lehmer test for 
the primality of Mersenne numbers. 

By using the results in [12] and [15] we can also prove the following sufficiency 
test for the primality of numbers of the form Arn _ 1 (A < r"). 
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THEOREM 3.3. Let N = Ar' - 1 (A < r'), where r is an oddprime. If (A/N) = -1 
and 

Gs (W(N+1)/2r) 0 (mod N), 

where s = (r - 1)/2, then N is a prime. E 

In order to convert this into a necessary and sufficient primality test, we need to 
derive a theorem like Theorem 3.1. In [12] and [16] it is shown that if q is a prime 
such that q 1 (mod r), and p is a prime such that p -1 (mod r) and 

p (q-l)lr$ 1 (mod q), 

then we can compute s = (r - 1)/2 coefficients C(i, r, q), i = 0, 1, 2, .. ., s - 1, 
independently of p, such that the following theorem holds. 

THEOREM 3.4. Let R be any integer such that 

Gs(R) 0 (mod p). 

If 
s-1 

P- EC(i, r, q)R1, Q qr2 (mod p), 
i=o 

then 

Gs(W(p+1)/2r) 0 (mod p). O 

Notice that Theorem 3.4 is somewhat similar to Theorem 3.1 in that we can 
specify in advance P. Q such that U(P+1)/r(P, Q) 0 (mod p). By using Theorem 
3.4 we can easily deduce the following result from Theorem 3.3. 

THEOREM 3.5. Let N = Arn - 1, where A < rn, 2 1 A, and suppose that q is a prime 
such that q 1 (mod r) and 

N(q-l)lr 0,1 (mod q). 

If R is any integer such that 

Gs(R) O(mod N) 

and 
s-1 

P- ?C(i, r, q)R', Q qr2 (mod N), 
i=O 

then N is a prime if and only if 

Gs ( W(N+ 1)/2r) 0 (mod N). O 

Thus, in order to make this an effective primality test, we need to be able to 
determine q, C(i, r, q) (i = 0, 1, 2, . . ., s - 1), and R. In Section 5 we discuss how q 
can be determined for certain values of A, and we give some tables of C(i, r, q) for 
r = 5 and 7. 

In many cases we can find a value for R by performing the sufficiency test given 
as Theorem 3.3. Before we indicate how this may be done, we need 
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LEMMA 3.1. Let p be an odd prime such that p + AQ. If c = 1 or 2, m is any odd 
divisor of p - E, and t = (p - e)/m, then U, 0 (modp) if and only if V, 
2,cQ Ct/2 (mod p). 

Proof. By (2.1) it is clear that p I Ut when V- 2qcQcf/2 (mod p). 
If Uct 0 (mod p), by (2.2) we have Ut 0 (mod p) or, possibly in the case of 

c=2, V 0 (mod p). Suppose Ut 0 (mod p). By (2.1) we must have V- 20Qt/2 
(mod p), where 0 = +1; hence V2t 2Qt (mod p). Since Gk(-2)= (1)k and by 
(2.7) 

Vmt= (-1)kQktGk(-2)Vt (mod p), 

where k = (m - 1)/2, we have Vmt 20Qmf/2 - 2Q(1')/2 (mod p) by (3.1). It 
follows that 0 = a. 

If c = 2 and Vt 0 (mod p), then V2t -2Qt (mod p). Now by (3.1) and (2.8), 

0 -m = Q k(V2/Qt)Ut (mod p); 
thus, Ut 0 (mod p). However, by (2.1) we see that we cannot have both Ut 0 
(mod p) and Vt 0 (mod p). f 

Now if N = Arn _ 1 is a prime, P, Q are chosen such that (A/N) = -1, 

-q = (Q/N) # 0 and VCA # 2(Q/N)cQAc/2 (mod N), then by (2.1) we have UcA # 0 

(mod N) and by (3.1) and (2.2), UcArn 0 (mod N). It follows that there must be a 
minimal m (0 < m < n) such that 

UcAr' X 0 (mod N) and UcAr,+1 0 (mod N). 
By (2.8) we must have 

(3.2) Gs(V2cAr' Q =cr 0 (mod N) (m < n). 

Further, if (3.2) holds, then by (2.8) and Lemma 3.1 we have 
(3 .3) WcArm+1/2= 2C (mod N) (m < n). 

On the other hand, if m is the least nonnegative integer such that (3.3) holds, then 

UcArm+? 0 (mod N). 

By (2.8) this means that either (3.2) holds or N I UcAr"'. If N I UcArrn, then by Lemma 
3.1 we get WcAr ,/2 -- 2-c (mod N), which contradicts the minimality of m. Thus, if 
m is the least nonnegative integer for which (3.3) holds, then m is the least 
nonnegative integer for which (3.2) holds. 

Under the assumption, then, that N is a prime, we can find a value for R by 
attempting to use our sufficiency test for the primality of N. Our only problem here 
is our assumption that VCA # 2(Q/N)CQAc/2 (mod N). We can certainly select P, Q 
to ensure that this will not happen when A is very small, but for larger values of A 
we have no a priori method for doing this. In Sections 4 and 6 we will show how, for 
certain values of A, when r = 5 or 7, we can, under the assumption that N is a 
prime, find a value for R, even when A is large. Also we will deduce this R-value 
from an attempt to use our sufficiency test to prove N a prime. 

4. Solution of Quadratic and Cubic Congruences. In order to find R when r = 5 or 
7, we must be able to solve G2(x) 0 (mod N) or G3(x) 0 (mod N). Now 
G2(x) = x2 + x - 1 and G3(x) = x3 + x2 - 2x - 1; hence, we must develop 
methods involving Lucas functions for solving quadratic and cubic congruences 
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modulo N. Since we may assume that N is a prime, we will first discuss the solution 
of 

(4.1) X2 = a (mod p), 
where p is a prime and (a/p) = 1. We will divide our discussion into two cases, 
depending on the congruence class of p modulo 4. 

If p -1 (mod 4), then x a is certainly a solution of (4.1); however, the 
problem of testing N for primality and deducing a(N+ 1)/4 (mod N) are not usually 
related (but see the remarks in Section 6). What we wish to do here is find a method 
for solving 

x2-=a (mod N), 

which we can integrate into a single sufficiency test for the primality of N. This 
means that we must use the Lucas functions to solve (4.1), and, specifically, Lucas 
functions such that (A/p) = -1. In fact, since the computation of Wm can be done 
efficiently, we will attempt to solve (4.1) by making use of these W-functions. 

Let (A/p) = (Q/p) = -1. We have 

v(p+1)/20 (modp) 

by (3.1), Theorem 3.1, and (2.2). Thus, we may assume that there exists a k such that 

V2k O(mod p). 

By (2.1) we must have 

-AU22_ 4Q2k (mod p) and (21AU2kQ A (mod p). 

Since V2k 0 (mod p), we have Wk 0 (mod p); hence, by (2.16), we have 

AU2kQ 2QWk+?P1 (mod p). 

Thus, if we find P, Q such that / = P2 - 4Q -a (mod p) and (Q/p) = -1, then 

x P-'QWk+l (modp) 

is a solution of (4.1). 
For the case under consideration here we put a = 20Y2, P = 2X, Q = X2 + 5y2, 

where (X2 + 5y2/p) = -1. We see that 

x (4XY)(X2 + 5Y2)Wk+l (modp) 

is a solution of 

(4.2) x2 5 (mod p). 

Hence y (-1 + x)2-1 (mod p) is a solution of G2(y) 0 (mod p). 
If p 3 (mod 8) and (A/p)= -1, (Q/p) = 1, then U(p+1/2 0 (mod p), and 

there must exist some odd t (= 2k + 1) such that 

U2t 0(modp). 

By (2.2), this means that either p I Vt or p I Ut. If p I U., then by (2.1) we have 

(21Q kV2k+l)2 Q (mod p); 

if p I V, then 

-A(21Q kU2k+l) Q (mod p). 
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Thus, if we can find X, Y such that a = X2 + y2, we can put P = 2X, Q = X2 + 
Y2, A = y4Y2. It follows from (2.14) and (2.15) that we either have 

x = (4X)1(x2 + YW)(Wk ~l + Wk) (mod p) 

or 

- (4Y) (X2 + Y)(Wk+l - Wk) (mod p) 

as a solution of (4.1). If a = 5, we can put X= 1, Y= 2, P = 4, Q = 5, and 
A = -16. 

The problem of solving (4.1) when p 1 (mod4) by using Lucas functions has 
been discussed by Cipolla (see [3, p. 218]) and Lehmer [8]. If, as in [3], we put a = Q 
and select P such that (A/p) = -1 and (Q/p) = + 1, then 

U(p+1)/2 0 (mod p). 

Thus, there must exist some k such that 

V2k+1 _4Q2k (mod p). 

By (2.14), 

x = (2P)'Q(Wk+l + Wk) (mod p) 

is a solution of (4.1). If we find X and Y such that (X2 - 5y2/p)= -1 and put 
P = 2X, Q = 5Y2, wefind that 

x 5Y(4X)1(Wk+I + Wk) (mod p) 

is a solution of (4.2). 
Of course, in the cases of p -1 (mod 8) and p 1 (mod 4), we must search for 

X and Y; and, as a consequence of this, we see that these algorithms are not 
effective. However, for many numbers it is easy to find such an X and Y. We discuss 
this problem at greater length in Section 5. 

For our discussion of the cubic congruence modulo p we will assume that p > 3, 
p + a and that we wish to solve 

(4.3) x3 -ax + b O (mod p) 

when such a congruence has a solution. Cailler [1] gave a method which utilized the 
Lucas functions for solving (4.3); however, he obtained his solution as a ratio of two 
of the U's. We will instead obtain a solution, when possible, in terms of the 
W-functions. As does Cailler, we first note that if Q 3-1a, P 3ba' (mod p) 
and y is a solution of (4.3), then if p + A, we get 

z3 a// (mod p), 

when 

z = (y - a)l(y - ,B) (mod p) . 

It follows that, since z p 1 (mod p), we have 

P I U(p-e)/3(P, Q). 

Thus we may assume the existence of some t such that t j(p - -)/3 and U- 0 
(mod p). Suppose further that 3 + t (this is certainly the case if p # E (mod 9)) and 
that (p - e)/3t is odd. We have VJ 2qQt/2 (mod p) by Lemma 3.1. We now 
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select c such that 3 l Ct + 1 (c = 1 or 2) and note that 

c t 2rcQc/2 and U,' 0 (mod p). 

Thus, by (2.5), we have 

(4.4) 2V.t+?1 -VcV1 + UU1 -- 2PrqLQ /2 (mod p). 

If we put k = (ct + 1)/3, we get 
qcpQtC/2 - V - 3QkV(mod p) 

from (4.4) and (2.3). Since 2 I t, we must have k = 2m + 1, and we get 

(VkQ-m)3 - 3Q(VkQm) _cPQ (mod p) 
or 

(-cV Q-m)3 - a(-qcVkQ-m) + b 0 (mod p). 

By using (2.14), we see that 

x--qcP-lQ(Wm+l + Wi) (mod p) 

is a solution of (4.3). 
We emphasize here that we have not solved the general cubic congruence by this 

technique. We needed here that p + a and 3 + t, conditions that do not occur for 
every cubic congruence; nevertheless, for our immediate problem this technique 
works in many cases. If we put y = 3x + 1 in 

(4.5) G3(x) O (mod p), 

we get 

y3 -21y-7O(modp), 

and we can put Q = 7, P = -1, A = -27. We have E = (-3/p), and a solution of 
(4.5) is given by 

X-(-1 + q1C7(W?+ I + W ))3-1 (mod p), 

whenever 3 + (p - -)/3. This is a more general result than that obtained by a 
different technique in [15] for the case of r = 7. 

5. Determination of q, X and Y. When N = Ar' - 1 we need to be able to find a 
small prime q such that q 1 (mod r) and 

(5.1) N(q- 0),r # Ok 1 (mod q). 

In general, this appears to be a difficult problem; however, in many cases it is not at 
all difficult to find a suitable q. We will consider this problem from the point of view 
of asking for a given r and q, what values of A exist such that (5.1) holds for any n. 
For example, if N = A5' - 1, and q = 11, then, if A 3 (mod 11), (5.1) holds for 
any value of n. 

Let S"(u, r, q) be the set of those values of A (mod q) such that 

Au 1)(q-1)/r W 1, 0 (mod q) 

for any n, and set L(u r, q) = (u, r, q) . If g is a fixed primitive root of q, 
A ga (mod q) and u = gJ (mod q), in order to determine L(u, r, q) we wish to 
count those values of a (mod q - 1) such that for all n there exists some i where 
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o < i < q - 1 and 

(5.2) ga~nj ~1 grh~i (mod q). 

Notice that if k = gcd(j, q - 1), we can replace (5.2) by 

(5.3) ga~nk g rh~i + 1(mod q). 

Also, v = (q - 1)/k is the least t(> 0) such that 

Ut=1 (mod q). 

If there does exist an n with i = 0, such that (5.3) holds, we have 

(5.4) A =ga =(grh + 1)g-nk (mod q). 

Since g rh + 1 will generate (q - 1)/r distinct values (mod q), we see that L(u, r, q) 
> 0 whenever v s< r. Also, (5.3) holds when we replace a by a + kt (t= 

0, 2, 3, ..., v- 1) and nby n- t,hence jIL (u, r, q). 
By using (5.4) it is a simple matter to compute f/(u, r, q) as the set of those 

integers (mod q) which do not have any representation of the form 

(grh + i)gnk, 

where h = O, 1,2,...(q - 1)/r - l and n = 0, 2, 3,. .., v - 1. For further informa- 
tion on the problem of computing numbers like L( u, r, q), we refer the reader to 
Lehmer and Vandiver [9]. 

We give in Table 1 below for (u, r) = (5, 5), (7, 7), (10, 5), the values of v (u, r, q) 
and L(u, r, q) when L(u, r, q) # 0 and q < 15000. Note that there are many 
instances of L(u, r, q) > 0 when v > r. In Tables 2 and 3 we give the elements in 
selected sets ?"(u, r, q). 

TABLE 1 

u =5, r =5 U =10, r =5 u =7, r= 7 

q v(u, r, q) L(u, r, q) q v(u, r, q) L(u, r, q) q v(u, r, q) L(u, r, q) 

11 5 5 11 2 .8 
31 3 18 41 5 10 29q 7 7 
71 5 20 101 4 40 43 6 24 

191 19 19 271 5 90 281 20 20 
521 10 70 3541 20 40 911 14 168 
601 12 36 7841 56 56 2801 5 1225 

1741 15 75 9091 10 900 4733 7 1554 
6271 19 76 9901 12 816 
8971 23 23 
9161 20 180 

TABLE 2 

q Elements of Y (5, 5, q) 

11 1, 3, 4,5, 9 

31 1, 3, 5, 8,9,12,13, 14, 15,16,17, 18,21, 22,23, 25,28, 29 

71 1, 3, 4, 5, 9, 11, 12, 15, 16, 20, 25, 26, 29, 45, 54, 55, 57, 59, 
60, 62. 

191 8, 9, 13, 34, 40, 45, 48, 49, 54, 65, 78, 79, 86, 92, 97, 103, 133, 
134, 170 
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On evaluating 1 - (1 - 5/11)(1 - 18/31)(1 - 20/71)(1 - 19/191) 852, we 
see that we have q equal to one of 11, 31, 71, or 191 for over 85% of all N of the 
form A5n - 1. Similarly, we have a q = 29, 43 or 281 for over 68% of all N of the 
form A7n - 1. If we were to use the values of the q's given in Table 1, we could 
change these figures to 88% and 90%, respectively. There are, however, values for A 
for which we can never expect to find a single q-value that will work for all 
Aun - 1. This is certainly the case if A - 1 is a perfect rth power. 

Consider, for example, numbers of the form N = 2 -0jn - 1. We find that if 
q = 101, then N 1. 19, 98, 80 (mod 101). Since none of 1920, 9820, 8020 is 1 
(mod 101), we can use q = 101 as long as 4 + n. If q = 41, then N 1, 19, 35, 31, 
32 (mod41). Of these only 18 and 328 are 1 (mod41). If N 32 (mod41), then 
n 4 (mod 5) and N 216 (mod 271); but, 2165 W 1 (mod 271). Thus, if 20 + n one 
of 41, 101, or 271, can be used as a value for q. The process we have begun here can 
be easily continued on a computer. We found that if 

k = 138007919535942456000 

= 26 35. 3 72. 11 .13 - 17 - 19 - 23 - 29 - 31 - 37 - 41 

and k + n, then one of 31, 41, 101, 131, 181, 191, 251, 271, 281, 331, 401, 521, 541, 
571, 641, 751, 811, 821, 881, 1021, 1151, 1231, 1361, 1451, 1471, 1741, 1861, 2531, 
2591, 3001, 3331, 3701, 4481, 4861 can be used for q. 

Once we have found a value for q we also need to know the values of the 
coefficients C(i, r, q). In Table 4 we give the values of C(i, 5, q) for all q < 10000 
and in Table 5 we give the values of C(i, 7, q) for all q < 5000. A description of how 
these numbers can be computed is given in [12]. 

When r = 5 we need to know how to compute X and Y. For a general A this is a 
very difficult problem, but for certain values of A it can be easily solved. If N -1 
(mod 4), we see from the results in Section 4 that we need only consider the case 
where 81 A. In this case, if A + 1 (mod 3), then N 0 or 1 (mod 3); thus, if 3 + N 
and 3 + A, we have (6/N) = -1 and we can put X = Y = 1. For the case of 24 A, 
we must search for some odd m such that (N/m)= 1 and 2rm = X2 + 5y2 or 
(N/m) = -1 and r = x2 + 5Y2. For example, if N 1, 2,4 (mod 7), then we can 
use X = 3, Y = 1. 

When N 1 (mod 4) it is more difficult to find values of A for which we can 
easily find X and Y n - 5YIml> 1, rm IA and mn -1 (mod4), then 
(m/N) = (N/m) = (-1/m) = -1. Thus, if 11 A we can use X = 4, Y = 1. If we 
do not know any such divisor of A, then we must search for m such that 
m = x2-y52 and (N/m) = -1. 

TABLE 3 
q Elements of 5?(7,7, q) 

29 1, 7, 16, 20, 23, 24, 25 

43 3,4,9,10,11,15,16,17,18,19,20,21,22,23,24,25,26,27, 
28,32,33,34,39,40 

281 10, 17,32,57,58,70,72,118,119,125,156,162,163,209,211, 
223, 224, 249, 264, 271 
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We can also regard this problem as being similar to our preceding problem; that 
is, we search for primes q and values of A such that 

(5.5) (A5n - I)q- 1)/ 1 (mod q) 

for all n. As we also need that q = X2 - 5y2, we must further restrict q =- + 1 
(mod 5). Unfortunately, such primes seem to be very rare. When q = 31, we have 
A 0, 16, 18, 28 (mod 31) as solutions of (5.5) for all n; when q = 19531, there are 
127 such values of A. These can be found by computing 5'k (mod 19531) (i = 

0, 1,2,... , 8), where k E {0, 66, 576, 652, 676, 772, 1348, 1492, 1677, 1891, 2108, 
2301, 2552, 2893, 3372, 3466, 3593, 3624, 5453). Also, if k = 66, 652, 5453, 
then 51k e Y(5, 5, 19531). We also have 19531 = 1562 - 5.312, C(0, 5,19531) = 
-2590642 and C(1, 5,19531) = -4403875. The primes 31 and 19531 are the only 
values of q known to the author such that these special values of A with q + A exist. 

We also point out that if A 5j (mod 31), where j E {5,11, 17.20) and n W -i 
(mod 3), then if 31 + N, we have (31/N) = -1. For each value of i there exist 99 
values of A (mod 829) (829 = 572 - 5 * 222) such that if 829 + N, then (829/N) = 

-1 when n = -i (mod 3). For example, if A = 17 (mod 31) and A 23 (mod 829), 
then (31/N) = -1 or (829/N) = -1. Many other results of this type can be derived. 

6. The Primality Tests. We now assume that we wish to test N = Arn - 1, where 
A < rn and r = 5 or 7, for primality. We further assume that N is odd. We 
emphasize here that it is only for those values of A such that we have a priori values 
for q, the coefficients C(i, r, q) and X, Y (when needed), that the tests given below 
are effective; however, as we have seen in Section 5, we can certainly provide such 
values for many values of A. 

We deal first with the case of r = 5. If 4 + A and N is odd, then N 1 (mod 4). If 
we can find X, Y such that (X2 - 5y2/N) = -1, we can put P= 2X, Q = 5y2 

and compute Wk. Wk+, (mod N), where k = (A - 2)/4. Set 

L-5Y(Wk+l + Wk )(4X)1 (mod N) 

and note that 

L (2Y) lQ kV2k+ I (mod N). 

Now 

V22 -4Q2k?4 (mod N) 

if and only if L2 5 (mod N). If L2 5 (mod N), then we have 

R 2-1(-1 + L) (mod N), 

and we can use this in the test given as Theorem 3.5. If L2 # 5 (mod N), then 

V22k+l # 4Q k?1 (mod N) 

and 

VA -V]2 - 2QA/2 A 2QA/2 (mod N). 
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If N is a prime, we have n = 1 and 

VA # 2,qQA/2 (mod N). 

Thus, by the remarks of Section 3 there must exist a least m (O < m < n) such that 

(6.1) WArm72 2'q (mod N) 

and 

G2(WArml-) 0 (mod N). 

If (6.1) holds for any N, then we know that if p is any prime divisor of N. we 
must have p I UArm, and p + UArm-1. Thus p ? 1 (mod rm) (see [7]). If (2rm -1)2 
> N, then N must be a prime. 

We may now assemble all of this information into a primality test for N = A5n - 
1 1 (mod4), A <5f 

Primality Test 1. 
(1) Select X, Y. 
(2) Put P = 2X, Q= 5Y2, k = (A - 2)/4; compute Wk, Wk 1 (mod N) and 

L 5Y(4X)-1(Wk~l + Wk) (mod N). 
(3) If L2 5 (mod N), put R (-1 + L)2-1 (mod N) and go to step (6); 

otherwise, 
(4) Compute S -WA/2- 4 5-1L2 - 2 (mod N). 
(5) Determine Si+ -- G2(2 - S2)Si (mod N), i = 1,2,..., until we find some 

m <- n + 1 such that Sm 2 (mod N). If no such m exists, N is composite. If 
(2 5m-1 - 1)2 > N, then N is a prime. If (2 * 5m-1 1)2 < N, put R Sm-l - 2 
(mod N). 

(6) Find q, C(0, 5, q), C(1, 5, q) and compute P C(0, 5, q) + C(1, 5, q)R, Q 
q3 (mod N) and, using these values of P, Q, calculate S- WA/2 (mod N). 

(7) Using Si+1 G2(2 - S72)Si (mod N), compute Sn. 
(8) N is a prime if and only if 

G2(S2 -2) 0 (mod N). 

In any running of this test it would be found that most prime values of N would 
be identified as such in step (5); however, if step (5) failed to determine whether or 
not N is a prime (m is too small), then steps (6) and (7) would settle the question. 
Thus, for example, if A 16, 18 or 28 (mod 31), we can use X = 6, Y = 1, q = 31 
and we have an effective necessary and sufficient O(log N) test for the primality of 
N. - 

When N = A5n - 1 -1 (mod4), we select X, Y such that(X2 + 5Y2/N) = -1 
and compute P = 2Y, Q = X2 + 5y2, Wk, Wk+1 (mod N), where k = A/4. If 
Wk 0 (mod N), we then determine 

L (4XY) 1QWk+l (mod N). 

By our remarks in Section 4 we know that 

R (-1 + L)2-1 (mod N) 
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is a solution of G2(x) 0 (mod N). If N is a prime and Wk # 0 (mod N), then 
VA/2 # O (mod N) and 

VA # -2QA/2 
= 

27,QA/2 (mod N). 

We now have a test for the primality of N = A5' - 1, where 81 A and A < 5 in 

Primality Test 2. 
(1) Select X, Y and put q = 1. 
(2) Put P = 2X, Q = X2 + 5Y2 and compute Wk. Wkl (mod N), where k = 

A/4. 
(3) If Wk 0 (mod N), put 

R (-1 + L)2-1 (mod N), 

where L (4XY)1-QWk+l (mod N) and go to step (6). 
(4)If Wk * 0(mod N), put 

S1 = W2k W2 - 2 (mod N). 

(5) Determine Si+ -- G2(2 - S72)Si (mod N) for i = 1, 2,... until we find some 
m < n + 1 such that Sm - 2,q (mod N). If no such m exists, N is composite. If 
(2 * 5n1 - 1)2> N, then N isaprime. If(2* 5f11 - 1)2 < N put R -S,21- - 2 
(mod N). 

(6) Steps (6), (7), and (8) are the same as those in Test 1. 

If, for example, we wish to adapt this test for use on numbers of the form 
N = A5n - 1 = 2- Ion - 1 (n >? 3), we first note that (6/N) = (3/N) = -1; hence, 
we can put X = Y = 1. By using the formulas in (2.2), we have the following 
effective test for the primality of numbers of the form 2 * 1on - 1 (n > 3) where 
138007919535942456000 + n. 

(1) Put P = 2, Q = 6, Y0 = (2. 10 n - 11)/3, Z0 = 2Yo + 6. (Note that Y0 
P Q1- 2 V2Q-1, Z0 PQ-1 U2Q-1 (mod N).) 

(2) Compute 

Yj+ =Yj2-2 (mod N), 

Zi + 1 ZiYj (mod N), j =0,1, 29 . . .. , n-1 

(We have Z ,-1 -UA/2QA/4 (mod N).) 

(3)If(5Zn1)2 5(modN),put 

R (-1 + 5Zn-1)2-1 (mod N) 

and go to step (5); otherwise, put S- - 2 (mod N). 
(4) Compute 

Si+ - G2(2 -- Si (mod N) 

until we find some m < n + 1 such that Sm -2 (mod N). If no such m exists, N 
is composite; if m >? 3n/4, N is a prime; if m < 3n/4, put R =S -I2. 

(5) Select q from the list given in Section 5 and find C(0, 5, q), C(1, 5, q) from 
Table 4. Compute 

P C(0,5,q)+C(1,5,q)R, Q-q3(modN). 
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(6) Compute Y0 - 2 (mod N) and determine Si = Yn (mod N) from 

Yj1+1 Yj2 _2 (mod N) (j = 1, 2, 3,..., n-1). 

(7) Use 

Si+1 G2(2-S72)S1(mod N) (i = 1, 2, 3 ..., n -1) 

to compute Sn. 
(8) N is a prime if and only if 

NIG2(S,2 -2). 

This test was implemented on an AMDAHL 5850'computer and used to de- 
termine the primality of all primes of the form 2 * 10" - 1 with n < 3400. We found 
that 2 10" - 1 is prime only for n = 1, 2, 3, 5, 7, 26, 27, 53, 147, 236, 248, 386, 401, 
546, 785, 1325, 1755, 2906, 3020. The author is indebted to Harvey Dubner for 
identifying the last four numbers in this table as the only likely primes when 
1000 < n < 3400. Indeed, if we are given a large range of values for n in which to 
search for the primes of the form N = A5" - 1 with 4 j A, because very few of the 
values of N will be prime, a more practical way of implementing our primality test 
for N is (after preliminary trial division by small primes) to first determine whether 
or not N is a base 5 probable prime by calculating 

R 5(N+)/4 (mod N). 

If R2 * 5 (mod N), then N is not a prime; if R2 - 5 (mod N), we need only 
execute steps (6), (7), and (8) of Primality Test 1. 

Test 2 can be used when N 3 (mod 8); however, in this case we can avoid the 
difficulty of searching for X and Y by using P = 2, Q = 5, k = (A - 4)/8. If 
neither 

5(Wk+l + Wk)41 nor 5(Wk+1 - Wk)81 

is a solution of (4.2), then when N is a prime we cannot have 

UA/2- 0 (mod N). 

It follows that VA/2 * 4QA/4 (mod N) and VA # 2 qQA/2 (mod N). Thus, in the 
case where N 3 (mod 8), we can replace steps (1), (2), (3), (4) of Primality Test 2 
by 

(1) Select P =2, Q = 5,= + 1. 
(2) Compute Wk, Wk+1 (mod N), where k = (A - 4)/8. 
(3) If 5(Wk+1 + Wk)4 1 or 5(Wk+1 - Wk)8 1 is a solution of (4.2), put L equal to 

this solution and put R (-1 + L)2-1 (mod N) and go to step 6. Otherwise, 
(4) Put L WA/4 -(Wk~l + Wk)241 - 2 (mod N), S1 WA/2 - 2 

(mod N). 
It is rather remarkable that for certain values of A we can obtain a test similar to 

Tests 1 and 2 for the primality of N = A7n _ 1 (A < 7"). For, in this case we must 
integrate the problem of solving a-certain cubic congruence into a prime test. We can 
do this for 1/3 of the possible values of A; that is, those values of A for which 3 1 A 
and 9 + A. We need not, of course, consider the case of A 1 (mod 3). 
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Let c (= 1 or 2) be such that cB =1 (mod 3), where B = A/6. Since N -1 
(mod 3), we have E = (A/N) = (-3/N) = -1 when P = -1, Q = 7. Also, 

= (Q/N) = (7/N) = (-1)(N+1 = (_1)B 

Now if N is a prime, we have N -1 (mod 7) and, consequently, 

(6.2) G3(X) (mod N) 

must be solvable; thus, 

(6.3) U(N+1)/3 - (mod N). 

Also, by the reasoning used at the end of Section 3, we know that if 

VCA - 27qcQ (mod N), 

then N I UA. If N I UA, by (2.3) we have N I UA/3 or VA3 QA/3 (mod N). Set 
m = 7f = (N + 1)/A and s = (m - 1)/2; by (2.8) we have 

(6.4) U(N+1)/3 - QAS/3G1(V2A13Q A/3)UA/3 (mod N). 

If VA2/3 _QA/3 (mod N), then V2A/3Q A/3 -1 (mod N) by (2.2); hence, because 
3 l s, we get 

Gs(V2A/3Q-/A3) 1 (mod N). 

It follows from (6.3) and (6.4) that UA/3 0 (mod N). 
By the results of Section 4 we see that if VCA 2qcQcA/2 (mod N), then 

(-1 + 71qc(Wk+l + Wk))3-1 (mod N) 

is a solution of (6.2). 
From (2.16) we get 

27W3k+ - 91W3 + 147Wk Wk+l - 49Wk+l (mod N) 

and by (2.3), 

WCA/2 -VCAQ = -W3CB = W3(3k+1) W3k+1(W3+1 -3) (mod N) 

We can now give our primality test for numbers of the form N = A7' - 1, where 
A = 6B,3 + B, A < 7"as 

Primality Test 3. 
(1) Using W1 = 6B7" - 2, compute Wk, Wk +I (mod N), where k = (cB - 1)/3, 

cB 1 (mod3), c= or2. 
(2) Put 

R 2B7"(-1 + (-1) cB7(Wk + Wk+1)) (mod N). 

If G3(R) 0 (mod N), go to step (5); otherwise, 
(3) Put 

M 8B 73 (91W,, + 147Wk Wk+l - 49Wk3+1) (mod N), 

S1 M(M2- 3) (mod N). 
(4) Compute 

Si+, -G3(2 - S72)Sj (mod N) for i = 1,2,3,... 
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until we find some m < n + 1 such that Sm-- 2,qC (mod N). If no such m exists, N 
is composite; if (2 7m-1 - 1)2 > N, then N is a prime; if (2 7`1 - 1)2 < N, put 
R S - 2 (modN). 

(5) Select q and determine C(O, 7, q), C(1, 7, q), C(2, 7, q). Put 

P C(O, 7, q) + C(1, 7, q)R + C(2,7, q)R2 (mod N), 

Q q5 (mod N), 

SI WAX2 (mod N). 

(6) Using 

Si + -- -G3(2 - S72)S (mod N), 

compute S,* 
(7) N is a prime if and only if 

G3(S,2- 2) O(modN). 

If A 2 (mod 3) and A # 2 - 3n (mod 9), we can still solve for R by using the 
results in Section 4 with t = (N - 1)/3; but, because N 1 (mod 3), we have 
c = (A\/N) = 1 and, therefore, we cannot integrate the problem of solving (6.2) into 
a sufficiency test for the primality of N as we did above. 
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