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Abstract. It is shown how polynomial time prime tests, which are both fast and deterministic,
can be developed for many numbers of the form Ar" — 1 (r = 5,7; A < r"). These tests, like
the Lucas-Lehmer test for the primality of the Mersenne numbers, are derived by using the
properties of the Lucas functions. We exemplify these ideas by using numbers of the form
2-10" - 1.

1. Introduction. If N is an integer of the form 2" — 1 (n odd, n > 2), the
Lucas-Lehmer test for the primality of N may be given in terms of the following 3
steps:

(1) Put S, = 4.

(2) Define for k > 1

Si1=SE—2(mod N).
(3) N is a prime if and only if
S,_;=0(mod N).

This is an effective primality test for N which executes in O(log N) operations.**
In [7] Lehmer showed, by changing the value of S|, that tests like this could be
developed for numbers of the form A2" — 1 whenever 4 < 2". The difficulties
which arise when 3 | A have been discussed by Inkeri [5] and Riesel [10], [11].

Williams [13], [14] described O(log N) tests for the primality of integers of the
form A3" — 1 (A < 3"). The test in [13] is effective for those values of N for which
we know a small prime ¢ such that N is a cubic nonresidue of q. For certain values
of A such a ¢ is easy to find; for example, if 4 =4, 7, 8, 10, 11, 12 (mod 13), then
g = 13. In [12] Williams extended his ideas for N = 43" — 1to N = Ar" — 1, where
r is an odd prime and 4 < r”. However, in order for these tests, which again
execute in O(log N) operations, to be effective, it is first necessary to have a small
prime ¢ such that N is an rth power nonresidue of ¢, and it is also necessary to
have a solution R of a certain polynomial congruence of degree (r — 1)/2. It was
shown in [12] how this latter problem could be dealt with when A is very small or
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when r = 5. In Williams [15] it was shown that for certain values of 4, when r = 7
or 11, an effective O(log N) method could be developed to find R. In all of these
cases, however, when A4 is large it is first necessary to find R, then employ it in the
primality test.

In this paper we show how the tests for the primality of N = 45" — 1 or 47" — 1
for certain A-values can be made more efficient than those described earlier. We do
this by first providing a noneffective O(log N) primality test for N. Should this test
fail to determine whether or not N is a prime, it will still provide a value for R,
which can subsequently be used in an effective O(log N) test for the primality of N.
In order to do this, we must first develop some simple properties of the Lucas
functions and also show how the Lucas functions can be utilized in the problem of
solving certain quadratic and cubic congruences.

As an example of our new tests, we mention here that by using the ideas of [12] it
is possible to develop an effective O(log N) test for the primality of integers of the
form

N=2-10"-1
when n is odd (Zarnke and Williams [17]). By using the ideas presented here we are

now able to provide an effective O(log N) test for the primality of N when » is even
and 138007919535942456000 does not divide n.

2. Some Identity Properties of the Lucas Functions. Let P, Q be two coprime
integers and let a, B be the zeros of x2 — Px + Q. We define the Lucas functions
V.(P,Q), U,(P,Q) (n € Z) by

Vu(P,Q)=a"+p",  U(P,Q)=(a"—B")/(a = B).
Also, if we put § = a — B and A = §%, we have A = P2 — 4Q. (We assume here
that § # 0.) When dealing with the Lucas functions modulo N it is sufficient to
insist that gcd(N, Q) = 1 rather than gcd(P, Q) = 1.

There are many identities which are satisfied by the Lucas functions and, as we
will need several of them in our later work, we present a number of these identities
below. Unless there is some ambiguity concerning the values of the arguments P, Q
of V,(P,Q) and U,(P, Q), we often omit them. The identities (2.1) to (2.5) below
are well known and can be easily verified by using the definitions of ¥, and U,.

(2.1) V- AUZ = 4Q",

(2.2) Van=VE-20" Uy, =V,

(2.3) Vin=Va(V2=30"), U,=U,(V2-0"),

(2.4) Viin= V= Qs Upin= VU, = Q"U,_,,
(2.5) Wpin=VV,+ AU, 2U,.,=UV,+VU,.

The identity (2.6) can also be verified by direct substitution.
(2.6) 8a"U, = Vo™ — Q"V,_,.

If we define the Sylvester polynomial G, (x) by G_;(x) = -1, Gy(x) =1, and
Gi1(x) = xG(x) = G_(x) (k = 0,1,2,...), then

x23+1 -1

-1 = xSGs(x + x'l).
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Also, G,(-2) = (-1)°, and when 3|s, G(-1)=1. If we put r=2s +1 and x =
_(a/B)n’ we get

(2.7) Vir = (-1)'Q"G,(-V,,/Q")V,;
if we put x = (a/B)", we get
(28) Unr = QnsGs(VZn/Qn)Un‘

These identities generalize the identities (2.3).
It is also convenient to have identities for V,, ,, U,,, . Such identities may be
obtained by using (2.6) to see that we must also have
~3B"U, = V,B" = Q" .
If we raise this identity and (2.6) to the odd power r and then multiply the first by
B* and the second by a*, we get

-8B"U, B = (V8™ — Q™V,_,.) B,
8raan":ak = (Vnam _ le/;l_m)’ak.
If we subtract these, expand by the binominal theorem, and use the fact that
Umj+k = (amj+k - ij+k)/8’ we get

@9) s, U= X () ()T I
j=0

for odd r. If we had added the two identities above we would get a similar identity
for AV*V/2y, Ur. If r is even, we can also get identities for A%V, U, and
A7?U,,, Ur. None of these identities, in spite of the ease by which they may be
derived, seems to occur in the extensive literature on the Lucas functions. They are
similar to identities discovered by Siebeck (see [3, p. 394]), Jarden and Motzkin (see
[6, pp- 79-80]), Halton [4], and Carlitz and Ferns [2].

To compute V, (and U,) (mod N) for large values of n, it is convenient to
introduce the function

W, = V3,0~ (mod N).
(We assume here that gcd(Q, N) = 1.) If we replace n by 2n and m by 2m in (2.2)
and (2.4), we get

(2.10) W,,= W} —2(mod N)

and

(2.11) w,..=WW,—W,_, (modN).
If we put m = n + 1in (2.11), we get

(2.12) Waner = WW,. = W, (mod N),
where

W, = P*Q7! —2(mod N).

Now let (byb,b, - - - b,), be the binary representation of m, where b, =1, b, = 0
or 1 when i =1,2,3,...,¢, and t = [log, m]. Using the notation {4, B} = {C, D}
(mod N) to mean A =C, B=D (mod N), set #,={W,,W,} (mod N) and
deduce ;| from &, = {4, B} by
P {A4*—2, AB— W,} (mod N) when b,,, =0,

"1\ (4B - Wy, B*—2) (mod N) whenb,,, = 1.



388 H. C. WILLIAMS

From (2.10) and (2.12) it is clear that
‘@t = {Wm’ Wm+1} (mOd N)
This furnishes us with a computationally efficient method for computing the values
of W, and W, , (mod N).
We have already seen that some identities like (2.2) and (2.4) simplify when

converted to congruences involving the W-functions. We should also point out here
that (2.7) becomes

(2.13) W, = (-1)°G,(-W,,)W, (mod N).

Also, by putting m = 2n + 1 and n = 1 in (2.4), we get

(2.14) PVyir07" = Q(W,,y + W,) (mod ).

If weput n =1and m = 2n + 11in (2.5) and (2.4), we get

(2.15) AUy, 107" = Q(Wy., — W,) (mod N).

If we put m = 2n and n = 2 in (2.5), we also have

(2.16) PAU,, Q™" = 2QW, ., — (P = 2Q)W, (mod N).

Finally, on putting r = 3, k = -4, m = 2in (2.9), we get
PAV,, 4=V} = 3QWV2,+ QP2 - 20)V,2,,
and if we put n = 2m + 2, we get
(217) PAW,,,,, = Q*W,2,, — 3Q*W,, . W2+ Q(P* - 20)W; (mod N).
3. Some Number-Theoretic Properties of the Lucas Functions. Let p be an odd

prime such that p + AQ and let ¢,  equal the values of the Legendre symbols (A/p)
and (Q/p), respectively. It is well known that

(3.1) v, =200°2 U, =0(mod p).
Further, in [7] Lehmer proves
THEOREM 3.1. Ifp + AQ, thenp t U,_,, ifandonly if n = -1. O
By using this result, Lehmer essentially proves

THEOREM 3.2. Let N = A2" — 1, where A < 2". If the Jacobi symbols (A/N) =
(Q/N) = -1, then N is a prime if and only if

Viven2(P, Q) =0(mod N). O

For example, if we put P =2, Q = -2, then A = 12 and (A/N) = (Q/N) = -1
when N = 2" — 1 (n > 2). Hence, -W, = 4, and if §; = -W,, we have S, = Wy
(mod N) by (2.10) and

Sp-1= W(N+1)/4 = V(N+1)/2Q‘(NH)/2 (mod N).

Thus, N |S,_; if and only if N |V y, 1, and we have the Lucas-Lehmer test for
the primality of Mersenne numbers.

By using the results in [12] and [15] we can also prove the following sufficiency
test for the primality of numbers of the form Ar" — 1 (4 < r").
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THEOREM 3.3. Let N = Ar” — 1(A < r"), where r is an odd prime. If (A/N) = -1
and
Gs(W(N+1)/2r) =0 (mod N),
where s = (r — 1)/2, then N is a prime. O

In order to convert this into a necessary and sufficient primality test, we need to
derive a theorem like Theorem 3.1. In [12] and [16] it is shown that if ¢ is a prime
such that ¢ = 1 (mod r), and p is a prime such that p = -1 (mod r) and

pl4=Y/" £ 1 (mod q),

then we can compute s = (r — 1)/2 coefficients C(i,r,q), i =0,1,2,...,5 — 1,
independently of p, such that the following theorem holds.

THEOREM 3.4. Let R be any integer such that
G,(R) = 0 (mod p).

If
s—1 )
P=3} C(i,r,q)R, Q=g *(modp),
i=0
then

Gs(VV(p+1)/2r) =0 (mOd P) O

Notice that Theorem 3.4 is somewhat similar to Theorem 3.1 in that we can
specify in advance P, Q such that U, (P, Q) # 0 (mod p). By using Theorem
3.4 we can easily deduce the following result from Theorem 3.3.

THEOREM 3.5. Let N = Ar" — 1, where A < r", 2| A, and suppose that q is a prime
such that ¢ = 1 (mod r) and

N@=D/r 0,1 (mod q).
If R is any integer such that
G,(R) =0 (mod N)

and

s—1

P=Y C(i,r,q)R, Q=g ?(mod N),
i=0

then N is a prime if and only if
Gs(pV(N+1)/2r) =0(mod N). O

Thus, in order to make this an effective primality test, we need to be able to
determine ¢, C(i, r,q) (i = 0,1,2,..., s — 1), and R. In Section 5 we discuss how g
can be determined for certain values of 4, and we give some tables of C(i, r, q) for
r=>5and7.

In many cases we can find a value for R by performing the sufficiency test given
as Theorem 3.3. Before we indicate how this may be done, we need
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LeMMA 3.1. Let p be an odd prime such that p + AQ. If c = 1 or 2, m is any odd
divisor of p — ¢, and t = (p — €)/m, then U, =0 (mod p) if and only if V,, =
27°Q“'/2 (mod p).

Proof. By (2.1) it is clear that p |U,, when V,, = 29°Q<"/? (mod p).

If U, =0 (mod p), by (2.2) we have U, = 0 (mod p) or, possibly in the case of
¢=2,V,=0 (mod p). Suppose U, = 0 (mod p). By (2.1) we must have V, = 26Q'/?
(mod p), where 8 = +1; hence V,, = 2Q* (mod p). Since G,(-2) = (-1)* and by
Q2.7)

Ve = (-1)*Q4G,(-2)V, (mod p),
where k = (m — 1)/2, we have V,, = 200™"/? = 201~9/2 (mod p) by (3.1). It

follows that 8 = 1.

If c = 2 and V, = 0 (mod p), then V,, = -2Q* (mod p). Now by (3.1) and (2.8),

0="U,_, = Up=0"G,(V,,/Q')V, (mod p);

thus, U, = 0 (mod p). However, by (2.1) we see that we cannot have both U, = 0
(mod p) and ¥, = 0 (mod p). O

Now if N=Ar"—1 is a prime, P, Q are chosen such that (A/N)= -1,
n=(Q/N)# 0and V,, # 2(Q/N)‘Q4/? (mod N), then by (2.1) we have U,, # 0
(mod N) and by (3.1) and (2.2), U, ,,» = 0 (mod N). It follows that there must be a
minimal m (0 < m < n) such that

Uyn#0(modN) and U, m« =0 (modN).

By (2.8) we must have
(32) Gy(Vaeum@ ") = 0 (mod N) (m < n).

Further, if (3.2) holds, then by (2.8) and Lemma 3.1 we have
(3.3) Wogpmei sy = 20° (mod N)  (m < n).

On the other hand, if m is the least nonnegative integer such that (3.3) holds, then
U 4m+1=0(mod N).

By (2.8) this means that either (3.2) holds or N |U,,~. If N |U,,,, then by Lemma
3.1 we get W, 4,m ,, = 27° (mod N), which contradicts the minimality of m. Thus, if
m is the least nonnegative integer for which (3.3) holds, then m is the least
nonnegative integer for which (3.2) holds.

Under the assumption, then, that N is a prime, we can find a value for R by
attempting to use our sufficiency test for the primality of N. Our only problem here
is our assumption that ¥, , # 2(Q/N)°Q“¢/? (mod N). We can certainly select P, Q
. to ensure that this will not happen when A is very small, but for larger values of 4
we have no a priori method for doing this. In Sections 4 and 6 we will show how, for
certain values of 4, when r =5 or 7, we can, under the assumption that N is a
prime, find a value for R, even when A is large. Also we will deduce this R-value
from an attempt to use our sufficiency test to prove N a prime.

4. Solution of Quadratic and Cubic Congruences. In order to find R when r = 5 or
7, we must be able to solve G,(x)=0 (mod N) or G;(x)=0 (mod N). Now
Gy(x)=x*+x—1 and Gi(x)=x>+x?—2x —1; hence, we must develop
methods involving Lucas functions for solving quadratic and cubic congruences
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modulo N. Since we may assume that N is a prime, we will first discuss the solution
of

(4.1) x?=a (mod p),

where p is a prime and (a/p) = 1. We will divide our discussion into two cases,
depending on the congruence class of p modulo 4.

If p = -1 (mod4), then x = a»*1/* is certainly a solution of (4.1); however, the
problem of testing N for primality and deducing a‘¥*1/4 (mod N) are not usually
related (but see the remarks in Section 6). What we wish to do here is find a method
for solving

x*=a (mod N),

which we can integrate into a single sufficiency test for the primality of N. This
means that we must use the Lucas functions to solve (4.1), and, specifically, Lucas
functions such that (A/p) = -1. In fact, since the computation of W,, can be done
efficiently, we will attempt to solve (4.1) by making use of these W-functions.

Let (A/p) = (Q/p) = -1. We have

Vip+1,2 = 0 (mod p)
by (3.1), Theorem 3.1, and (2.2). Thus, we may assume that there exists a k such that
V,, =0 (mod p).

By (2.1) we must have

—-AU, = 402 (mod p) and (2'1AU2,(Q"‘)2 = -A (mod p).
Since V,, = 0 (mod p), we have W, = 0 (mod p); hence, by (2.16), we have

AU, Q7% = 20W, P! (mod p).
Thus, if we find P, Q such that A = P2 — 4Q = —a (mod p) and (Q/p) = -1, then
x = P~'QW,.,, (mod p)

is a solution of (4.1).
For the case under consideration here we put a = 20Y%, P =2X, Q = X* + 5Y2,
where (X2 + 5Y2/p) = -1. We see that

x = (4XY) ' (X* + 5Y2)W,,, (mod p)
is a solution of
(4.2) x?=5(mod p).
Hence y = (-1 + x)27! (mod p) is a solution of G,(y) = 0 (mod p).

If p=3(mod8) and (A/p) = -1, (Q/p) =1, then U, ,,,,, = 0 (mod p), and
there must exist some odd ¢ (= 2k + 1) such that

U,,=0(mod p).
By (2.2), this means that either p|V, or p|U,. If p|U,, then by (2.1) we have
P 2
(2 '0 kV2k+1) = Q (mod p);
if p|V,, then

‘A(z_lQ_kUzkH)z = Q (mod p).
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Thus, if we can find X, Y such that a = X2+ Y2, wecanput P=2X, Q = X> +
Y2, A = —-4Y?2 It follows from (2.14) and (2.15) that we either have
x = (4X)(X? + Y*)(W,,y + W) (mod p)
or
x = (4Y) (X + Y2) (W, = W,) (mod p)
as a solution of (4.1). If a=5, wecanput X=1, Y=2, P=4, Q =5, and
A = -16.
The problem of solving (4.1) when p = 1 (mod4) by using Lucas functions has

been discussed by Cipolla (see [3, p. 218]) and Lehmer [8]. If, as in [3], we put a = Q
and select P such that (A/p) = -1 and (Q/p) = +1, then

Upinp=0 (mod p).
Thus, there must exist some k such that
Viis1 = 4Q%*1 (mod p).

By (2.14),

x = (2P) QW1 + W,) (mod p)
is a solution of (4.1). If we find X and Y such that (X? — 5Y2/p) = -1 and put
P =2X, Q = 5Y?, we find that

x = 5Y(4X) (W, + W,) (mod p)

is a solution of (4.2).

Of course, in the cases of p = -1 (mod 8) and p = 1 (mod 4), we must search for
X and Y; and, as a consequence of this, we see that these algorithms are not
effective. However, for many numbers it is easy to find such an X and Y. We discuss
this problem at greater length in Section 5.

For our discussion of the cubic congruence modulo p we will assume that p > 3,
p t a and that we wish to solve

(4.3) x> —ax+b=0(mod p)

when such a congruence has a solution. Cailler [1] gave a method which utilized the
Lucas functions for solving (4.3); however, he obtained his solution as a ratio of two
of the U’s. We will instead obtain a solution, when possible, in terms of the
W-functions. As does Cailler, we first note that if Q = 37'a, P = 3ba~! (mod p)
and y is a solution of (4.3), then if p + A, we get

z¥=a/B (mod p),
when
z=(y—a)/(y - B) (mod p).
It follows that, since z#~¢ = 1 (mod p), we have
P1U,pos(P, Q).

Thus we may assume the existence of some ¢ such that 7|(p —¢)/3 and U, =0
(mod p). Suppose further that 3 + ¢ (this is certainly the case if p # ¢ (mod 9)) and
that (p — €)/3t is odd. We have V, = 29Q*/? (mod p) by Lemma 3.1. We now
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select ¢ such that 3| ¢z + 1 (¢ = 1 or 2) and note that
V,=21Q? and U, =0(mod p).
Thus, by (2.5), we have
(4.4) W1 = V) + AU, = 2Py°Q"/* (mod p).
If we put k = (ct + 1)/3, we get
1°PQ'/? = V) = 30"V, (mod p)
from (4.4) and (2.3). Since 2 | ¢, we must have k = 2m + 1, and we get

(V.2 ) = 30(V,0™™) = 7°PQ (mod p)
or

(V@) = a(-nV, Q™) + b = 0 (mod p).
By using (2.14), we see that
X = _T'CP_IQ(Wm+1 + Wm) (mOd P)
is a solution of (4.3).
We emphasize here that we have not solved the general cubic congruence by this
technique. We needed here that p + a and 3 + ¢, conditions that do not occur for

every cubic congruence; nevertheless, for our immediate problem this technique
works in many cases. f we put y = 3x + 1in

(4.5) G;(x) = 0 (mod p),
we get
y* =21y —7=0(mod p),
and we can put Q =7, P = -1, A = -27. We have ¢ = (-3/p), and a solution of
(4.5) is given by
x=(-1+97W,. .+ W,))3 " (mod p),

whenever 3 + (p — €)/3. This is a more general result than that obtained by a
different technique in [15] for the case of r = 7.

5. Determination of g, X and Y. When N = Ar" — 1 we need to be able to find a
small prime ¢ such that ¢ = 1 (mod r) and

(5.1) N@ /"2 0,1 (mod q).

In general, this appears to be a difficult problem; however, in many cases it is not at
all difficult to find a suitable g. We will consider this problem from the point of view
of asking for a given r and ¢, what values of A exist such that (5.1) holds for any 7.
For example, if N = AS" — 1, and ¢ = 11, then, if 4 = 3 (mod11), (5.1) holds for
any value of n. ‘

Let &(u, r, q) be the s¢t of those values of A (mod ¢q) such that

(Au" = 1) 1,0 (mod q)
for any n, and set L(u,ir, q)=|%L(u, r,q)). If g is a fixed primitive root of g,
A = g* (mod q) and u = g/ (mod q), in order to determine L(u, r, q) we wish to
count those values of a (mod g — 1) such that for all n there exists some i where
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0<i<g—1and

(5.2) gt/ — 1= g™ (mod q).

Notice that if kK = ged(j, ¢ — 1), we can replace (5.2) by

(5.3) gétmk = g+ + 1 (modgq).

Also, v = (¢ — 1)/k is the least #(> 0) such that
u'=1(modq).

If there does exist an n with i = 0, such that (5.3) holds, we have

(5.4) A=g*=(g”+1)g" (modgq).

Since g™ + 1 will generate (¢ — 1)/r distinct values (mod q), we see that L(u, r, q)
> 0 whenever v < r. Also, (5.3) holds when we replace a by a+ kt (t=
0,2,3,...,#» — 1) and n by n — ¢, hence v| L(u,r, q).

By using (5.4) it is a simple matter to compute ¥ (u, r, q) as the set of those
integers (mod ¢) which do not have any representation of the form

(8" +1)g™,

where h = 0,1,2,...,(¢q — 1)/r—1land n = 0,2,3,..., » — 1. For further informa-
tion on the problem of computing numbers like L(u, r, q), we refer the reader to
Lehmer and Vandiver [9].

We give in Table 1 below for (u, r) = (5,5), (7,7), (10, 5), the values of v(u, r, q)
and L(u,r,q) when L(u,r,q)# 0 and ¢ < 15000. Note that there are many
instances of L(u, r,q)> 0 when » > r. In Tables 2 and 3 we give the elements in
selected sets #(u, r, q).

TABLE 1
u=>:5, r=>5 u =10, r=35 u=717, r=17
g |vwrglLawrng| ¢ [vwro|Lare| ¢ |[vwrg|Larg
11 5 5 11 2 8
31 3 18 41 5 10 29 7 7
7 5 20 101 4 40 43 6 24
191 19 19 271 5 90 281 20 20
521 10 70 3541 20 40 911 14 168
601 12 36 7841 56 56 2801 5 1225
1741 15 75 9091 10 900 4733 7 1554
6271 19 76 9901 12 816
8971 23 23
9161 20 180
TABLE 2
q Elements of ¥ (5,5, q)
11 1,3,4,5,9
31 1,3,5,8,9,12,13, 14,15, 16, 17, 18, 21, 22, 23, 25, 28, 29
71 1,3,4,5,9,11, 12,15, 16, 20, 25, 26, 29, 45, 54, 55, 57, 59,
60, 62.
191 8,9, 13, 34, 40, 45, 48, 49, 54, 65, 78, 79, 86, 92, 97, 103, 133,
134,170
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On evaluating 1 — (1 — 5/11)(1 — 18/31)(1 — 20/71)(1 — 19/191) = -852, we
see that we have ¢ equal to one of 11, 31, 71, or 191 for over 85% of all N of the
form A5" — 1. Similarly, we have a g = 29, 43 or 281 for over 68% of all N of the
form A7" — 1. If we were to use the values of the ¢’s given in Table 1, we could
change these figures to 88% and 90%, respectively. There are, however, values for 4
for which we can never expect to find a single g-value that will work for all
Au" — 1. This is certainly the case if 4 — 1 is a perfect rth power.

Consider, for example, numbers of the form N =2 -10" — 1. We find that if
g =101, then N =1, 19, 98, 80 (mod 101). Since none of 192°, 982°, 80% is 1
(mod 101), we can use ¢ = 101 as long as 4 + n. If ¢ = 41, then N =1, 19, 35, 31,
32 (mod41). Of these only 1® and 328 are 1 (mod41). If N = 32 (mod41), then
n = 4 (mod 5) and N = 216 (mod 271); but, 216> # 1 (mod 271). Thus, if 20 + n one
of 41, 101, or 271, can be used as a value for g. The process we have begun here can
be easily continued on a computer. We found that if

k = 138007919535942456000
=26.3%.5%.72.11-13-17-19-23-29-31-37 - 41

and k + n, then one of 31, 41, 101, 131, 181, 191, 251, 271, 281, 331, 401, 521, 541,
571, 641, 751, 811, 821, 881, 1021, 1151, 1231, 1361, 1451, 1471, 1741, 1861, 2531,
2591, 3001, 3331, 3701, 4481, 4861 can be used for q.

Once we have found a value for ¢ we also need to know the values of the
coefficients C(i, r, q). In Table 4 we give the values of C(i,5, q) for all ¢ < 10000
and in Table 5 we give the values of C(i, 7, q) for all g < 5000. A description of how
these numbers can be computed is given in [12].

When r = 5 we need to know how to compute X and Y. For a general A4 this is a
very difficult problem, but for certain values of A4 it can be easily solved. If N = -1
(mod 4), we see from the results in Section 4 that we need only consider the case
where 8 | 4. In this case, if 4 = +1 (mod 3), then N = 0 or 1 (mod 3); thus, if 3 + N
and 3 t+ 4, we have (6/N) = -1 and we can put X = Y = 1. For the case of 24| 4,
we must search for some odd m such that (N/m)=1 and 2m = X2+ 5Y? or
(N/m)= -1 and m = X* + 5Y2 For example, if N = 1,2,4 (mod 7), then we can
use X =3,Y=1.

When N =1 (mod4) it is more difficult to find values of 4 for which we can
easily find X and Y. If m = X?> — 5Y2% |m| > 1, m| 4 and m = —1 (mod 4), then
(m/N)=(N/m)=(-1/m)= -1. Thus, if 11| 4 we can use X =4, Y = 1. If we
do not know any such divisor of A4, then we must search for m such that
m= X*-5Y?and (N/m) = -1.

TABLE 3
q Elements of ¥ (7,7, q)
29 1,7, 16, 20, 23, 24, 25
43 3,4,9,10,11,15,16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 32, 33, 34, 39, 40
281 10, 17, 32, 57, 58, 70, 72, 118, 119, 125, 156, 162, 163, 209, 211,
223, 224, 249, 264, 271
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We can also regard this problem as being similar to our preceding problem; that
is, we search for primes ¢ and values of 4 such that

(5.5) (45" = 1) P2 £ 1 (mod q)

for all n. As we also need that ¢ = X2 — 5Y2, we must further restrict ¢ = +1
(mod 5). Unfortunately, such primes seem to be very rare. When g = 31, we have
A =0, 16, 18, 28 (mod 31) as solutions of (5.5) for all n; when g = 19531, there are
127 such values of A. These can be found by computing 5k (mod19531) (i =
0,1,2,...,8), where k € {0, 66, 576, 652, 676, 772, 1348, 1492, 1677, 1891, 2108,
2301, 2552, 2893, 3372, 3466, 3593, 3624, 5453}. Also, if k = 66, 652, 5453,
then 5k € #(5,5,19531). We also have 19531 = 1562 — 5.31%2, C(0,5,19531) =
2590642 and C(1,5,19531) = -4403875. The primes 31 and 19531 are the only
values of g known to the author such that these special values of 4 with g + 4 exist.

We also point out that if 4 = 5% (mod 31), where j € {5,11,17,20} and n # —i
(mod 3), then if 31 + N, we have (31/N) = —1. For each value of i there exist 99
values of 4 (mod 829) (829 = 57% — 5 - 222) such that if 829 + N, then (829/N) =
-1 when n = —i (mod 3). For example, if 4 = 17 (mod 31) and 4 = 23 (mod 829),
then (31/N) = -1 or (829/N) = -1. Many other results of this type can be derived.

6. The Primality Tests. We now assume that we wish to test N = Ar" — 1, where
A <r" and r=5 or 7, for primality. We further assume that N is odd. We
emphasize here that it is only for those values of 4 such that we have a priori values
for g, the coefficients C(i, r, g) and X, Y (when needed), that the tests given below
are effective; however, as we have seen in Section 5, we can certainly provide such
values for many values of A4.

We deal first with the case of r = 5.1f 4 + 4 and N is odd, then N = 1 (mod 4). If
we can find X, Y such that (X? — 5Y2/N)= -1, we can put P =2X, Q = 5Y?
and compute W,, W, ., (mod N), where k = (4 — 2)/4. Set

L=5Y(W,,+ W)(4X)" (mod N)
and note that
L=(2Y)"'Q "y, (mod N).
Now
Vike1 = 4Q**1 (mod N)
if and only if L> = 5 (mod N). If L?> = 5 (mod N), then we have
R=2'(-1+L)(mod N),

and we can use this in the test given as Theorem 3.5. If L2 # 5 (mod N), then

Viks1 # 4Q%*1 (mod N)

and

V,=Vi,—20%%#20%? (mod N).
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If N is a prime, we have n = 1 and
V, # 21Q*/? (mod N).
Thus, by the remarks of Section 3 there must exist a least m (0 < m < n) such that
(6.1) Wy, =21 (mod N)
and
Gy(Wyyn-1) = 0 (mod N ).

If (6.1) holds for any N, then we know that if p is any prime divisor of N, we
must have p |U,,» and p t U,,m-1. Thus p = +1 (mod r™) (see [7]). If 2r™ — 1)
> N, then N must be a prime.

We may now assemble all of this information into a primality test for N = 45" —
1=1(mod4), 4 <5”".

Primality Test 1.

(1) Select X, Y.

(2) Put P=2X, Q=5Y2 k= (A4 - 2)/4; compute W,, W,,, (mod N) and
L=5YAX) (W, , + W,) (mod N).

(3) If L*=5 (modN), put R=(-1+ L)27! (mod N) and go to step (6);
otherwise,

(4) Compute S, = W, ,, = 4 - 5'L? — 2 (mod N).

(5) Determine S;,; = G,(2 — S?)S, (mod N), i =1,2,..., until we find some
m < n+ 1 such that §, =2 (mod N). If no such m exists, N is composite. If
(2-5m1'—1)>> N, then Nisaprime. If (25" ' -1)2<N,put R=S2_, — 2
(mod N).

(6) Find g, C(0,5, ), C(1,5, q) and compute P = C(0,5, ) + C(1,5, ¢)R, Q =
g*(mod N) and, using these values of P, Q, calculate S, = W, ,2 (mod N).

(7) Using S,,; = G,(2 — S?)S; (mod N), compute S,.

(8) N is a prime if and only if

G,(S? - 2) =0 (mod N).

In any running of this test it would be found that most prime values of N would
be identified as such in step (5); however, if step (5) failed to determine whether or
not N is a prime (m is too small), then steps (6) and (7) would settle the question.
Thus, for example, if 4 = 16, 18 or 28 (mod 31), we canuse X =6, Y =1, ¢ = 31
and we have an effective necessary and sufficient O(log N) test for the primality of
N

When N = 45" — 1 = -1 (mod 4), we select X, Y such that (X2 + 5Y2/N) = -1
and compute P =2Y, Q = X?>+ 5Y?, W,, W,,, (mod N), where k = A/4. If
W, = 0 (mod N), we then determine

L= (4XY)'QW,,, (mod N).
By our remarks in Section 4 we know that

R=(-1+L)2"!'(mod N)
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is a solution of G,(x)=0 (mod N). If N is a prime and W, # 0 (mod N), then
V4, # 0(mod N) and

V,# -2042=2904/? (mod N).
We now have a test for the primality of N = 45" — 1, where 8| 4 and 4 < 5" in

Primality Test 2.

(1) Select X, Y and put = 1.

(2) Put P=2X, Q = X?>+ 5Y? and compute W,, W, ,, (mod N), where k =
A/4. ,
3) If W, = 0 (mod N), put

R= (-1+L)27!' (mod N),
where L = (4XY)'QW, ., (mod N) and go to step (6).
(4) If W, # 0 (mod N), put

(5) Determine S,,; = G,(2 — S?)S, (mod N) for i = 1,2,... until we find some
m < n + 1 such that S, =29 (mod N). If no such m exists, N is composite. If
2-5""!'=1)2> N, then Nisaprime. If 2-5" ! = 1)2<Nput R=S?_, -2
(mod N).

(6) Steps (6), (7), and (8) are the same as those in Test 1.

If, for example, we wish to adapt this test for use on numbers of the form
N =45"—-1=2-10" - 1(n > 3), we first note that (6/N) = (3/N) = -1; hence,
we can put X =Y = 1. By using the formulas in (2.2), we have the following
effective test for the primality of numbers of the form 2 - 10” — 1 (n > 3) where
138007919535942456000 + n.

(1) Put P=2, 0=6, ¥,=2-10"-11)/3, Z, = 2Y, + 6. (Note that Y, =
PXQ'-2=1,0"',Z,=PQ' = U,0"! (mod N).)
(2) Compute

Y., =Y?-2 (modN),
Z,.,=2Y, (mod N), j=0,1,2,...,n—1.

(Wehave Z,_, = U, ,,Q0 /% (mod N).)
(3)If(5Z,_,)% = 5 (mod N), put
R=(-1+5Z, )2 (mod N)

and go to step (5); otherwise, put S; = Y2, — 2 (mod N).
(4) Compute
Sii1 = G,(2 — S8?2)S, (mod N)
until we find some m < n + 1 such that S, = -2 (mod N). If no such m exists, N
is composite; if m > 3n/4, N is a prime; if m < 3n/4,put R=S,;_| — 2.
(5) Select g from the list given in Section 5 and find C(0,5, q), C(1,5, q) from
Table 4. Compute

P=C(0,549)+C(1,59)R, Q=gq®(modN).
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(6) Compute Y, = P?Q~! — 2 (mod N) and determine S, = Y, (mod N) from

Y, = Y;2—2(modN) (j=123,...,n—1).

(7) Use
S;.1=G,(2-58?)S(mod N) (i=1,2,3,....,n—1)

1

to compute S,,.
(8) N is a prime if and only if

N|G,(S?-2).

This test was implemented on an AMDAHL 5850 computer and used to de-
termine the primality of all primes of the form 2 - 10" — 1 with n < 3400. We found
that 2 - 10" — 1 is prime only for n = 1,2, 3, 5, 7, 26, 27, 53, 147, 236, 248, 386, 401,
546, 785, 1325, 1755, 2906, 3020. The author is indebted to Harvey Dubner for
identifying the last four numbers in this table as the only likely primes when
1000 < n < 3400. Indeed, if we are given a large range of values for n in which to
search for the primes of the form N = 45" — 1 with 4| 4, because very few of the
values of N will be prime, a more practical way of implementing our primality test
for N is (after preliminary trial division by small primes) to first determine whether
or not N is a base 5 probable prime by calculating

R = 5V*D/4 (mod N).

If R?# 5 (mod N), then N is not a prime; if R> =5 (mod N), we need only
execute steps (6), (7), and (8) of Primality Test 1.

Test 2 can be used when N = 3 (mod 8); however, in this case we can avoid the
difficulty of searching for X and Y by using P=2, Q=5, k=(4-4)/8. If
neither

S(Wisr + Wi)4™ nor 5(Wy — W,)8!
is a solution of (4.2), then when N is a prime we cannot have
Uy, =0 (mod N).

It follows that ¥V, , # 40*/* (mod N) and V, # 27Q*/? (mod N). Thus, in the
case where N = 3 (mod 8), we can replace steps (1), (2), (3), (4) of Primality Test 2
by

(D)Select P=2,Q=5,7= +1.

(2) Compute W,, W, ., (mod N), where k = (4 — 4)/8.

BV IfS(W, .y + W)d Tor 5(W,,.; — W,)87! is a solution of (4.2), put L equal to
this solution and put R = (-1 + L)27! (mod N) and go to step 6. Otherwise,

4 Put L=W,,,=5W,, + W,)%4™ -2 (modN), S, =W,,= L>-2
(mod N).

It is rather remarkable that for certain values of 4 we can obtain a test similar to
Tests 1 and 2 for the primality of N = 47" — 1 (4 < 7"). For, in this case we must
integrate the problem of solving a certain cubic congruence into a prime test. We can
do this for 1/3 of the possible values of A4; that is, those values of A4 for which 3| 4
and 9 + A. We need not, of course, consider the case of 4 = 1 (mod 3).
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Let ¢ (=1 or 2) be such that ¢B =1 (mod 3), where B = 4/6. Since N = -1
(mod 3), we have ¢ = (A/N) = (-3/N)= -1 when P = -1, Q = 7. Also,

1=(Q/N)=(1/N) = (-)™"P"? = (-1)".

Now if N is a prime, we have N = -1 (mod 7) and, consequently,

(6.2) G;(x) =0 (mod N)
must be solvable; thus,
(6.3) Un+1y3=0(mod N).

Also, by the reasoning used at the end of Section 3, we know that if
V.4 = 2090”2 (mod N),
then N|U,. If N|U, by (2.3) we have N |U,,; or V},; = Q*/? (mod N). Set
m="7"=(N+1)/Aand s = (m — 1)/2; by (2.8) we have
(6.4) Un+ys = QAS/3GS(V24/3Q_A/3)UA/3 (mod N).

If V7,3 = Q"7 (mod N), then ¥, , 50 */> = -1 (mod N) by (2.2); hence, because
3]s, we get

G,(VausQ™*7%) = 1 (mod N).

It follows from (6.3) and (6.4) that U, ,; = 0 (mod N).
By the results of Section 4 we see that if V,, = 21°Q°4/? (mod N), then

(-1 + 79°(W, ., + W,))37! (mod N)

is a solution of (6.2).
From (2.16) we get

2IW,,,, = W + 14TWW, , | — 49W),, (mod N),
and by (2.3),
Wi = VoaQ A=W, 5= Wiak+1) = Wsk+1(W32k+1 - 3) (mod N).

We can now give our primality test for numbers of the form N = A7" — 1, where
A=6B,3+B, A<7"as

Primality Test 3.
(1) Using W, = 6B7"~! — 2, compute W,, W, ,; (mod N), where k = (cB — 1)/3,
¢B=1(mod3),c=1or2.
(2) Put
R =2B7"(-1 + (-1)®1(W, + W,,,)) (mod N).

If G5(R) = 0 (mod N), go to step (5); otherwise,

(3) Put
M =8B 73"(91W,2 + 14TW2RW, ., — 49W},,) (mod N),
S, = M(M? - 3) (mod N).

(4) Compute

Siv1=-G;3(2 — S?)S; (mod N) for i = 1,2,3,...
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until we find some m < n + 1 such that S,, = 29° (mod N). If no such m exists, N
is composite; if (2 - 77! — 1)2 > N, then N is a prime; if (2 - 7"~ ! — 1)2 < N, put
R=S2_,—2(modN).

(5) Select g and determine C(0,7, ¢), C(1,7, q), C(2,7, q). Put

P=C(0,7,9) + C(1,7,9)R + C(2,7,q)R? (mod N),

Q = ¢’ (mod N),
S, =W,,,(mod N).
(6) Using
S.01= -G;(2 — S2)S; (mod N),
compute S,.

(7) N is a prime if and only if
G5(S2—2) =0 (mod N).

If A =2 (mod3)and A4 # 2 — 3n (mod9), we can still solve for R by using the
results in Section 4 with ¢t = (N — 1)/3; but, because N =1 (mod 3), we have
e = (A/N) = 1 and, therefore, we cannot integrate the problem of solving (6.2) into
a sufficiency test for the primality of N as we did above.
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